Decision USB Series Products in LabVIEW

The basic idea is used the dll fill “USBDILdII” which are written in Visual C++ and
provides lots of functions to perform a variety of Analog input/output, Digital input/output and
RS-232/RS-485 Communication operations with the hardware of the Decision USB Device. You
can find user manual about USBDII in Product CD package or our website. The DLL files can be
easily used by higher-level computer language. For example, it provides a large variety of demo
programs that are written in Visual C++, Delphi, Visual Basic and even in LabVIEW.

In this document, it contains two concepts and four LabView VI files.

1. Call functions in USBDIL.dIl in LabVIEW
2. Directly use the Decision USB Device component in LabVIEW

VIs
1. USBDILvi

It contains “Call Library Function Node” for USBDILdIIL. This VI can’t be executed.
2. Decision_USBDevice.vi

It has already been packed as an universal object for Decision USB Device.

User can directly use this VI as a SubVI in their own project.
3. ex_1Device.vi

It demonstrates one device (USB16PR) built by SubVI “Decision_USBDevice.vi”.
This VI can be executed directly.

4. ex_2Device.vi

It demonstrates two devices in the same project and use clusters to simplify.

This VI can be executed directly.
Stand-alone exe file

LabVIEW can let users export their VI into a stand-alone exe file to execute their
project without develop environment. But still needs to install “LabView Runtime Engine”.
You can download it on LabVIEW official website for free. And then execute the exe file in

“exe_file_for_ex_2Device” folder to experience Decision USB devices in LabVIEW.

Call functions in USBDIL.dIl in LabVIEW

We use “Call Library Function Node” to call subroutines in DLL directly in LabVIEW.

"EE=I|
—

Step 1:
Execute LabVIEW and press “New VI”.
Step 2:

In Block Diagram, select Functions -> Connectivity
-> Libraries & Executables -> Call Library Function Node.

b Datitled 2 Block Dingeom. * ;j___ja‘
File [Edit WView Project Operate Tools Window Help o
@{&-‘ "’;'IE Ly i oft || 12pt Application Font |- ” :,;.v”ﬁj:vi |f§1vl B

[#]

" Hh u
I
]
Diebug Deplosvment i_J B

Step 3:

Press right button into its configure setting.

In “Function” page, you can select the path for the dll file and its function name.

In “Parameters” page, you can set the parameters for the function and its return value.

We use “HANDLE hid_OpenDevice (DWORD device_type, DWORD device_id)” in USBDII for example.

About functions in USBDII, user can find more detail in “USBDII_Manual.pdf”’.

i

File Edit ¥iew Pmoject Operate Tools Window Help

@ = ’_'@ ko

i

S of | 12pt Application Font | ~ || 5|

Handle hid_OpenDevice(dey_type,dev_id)
a B o

[IEH

[TEFE HTEE]
[IEFN MIEF]

Debug Deploviment [

— - L. |

User can use components we already built directly which contains functions in USBDIL.dII in
“USBDILvi”.

E
File Edit View Project Operate Tool: Window Help
Bl 1] 9][a5] o 7 ot [vmimimron_ -2~ [(1) (2]
Handle:hid_OpenDevice{dey_tvpe,dev_id) Handle:com_OpenDevice idev_twpe,dey_id, port_nmm)
a B n n di n
Ui .
[IFN HIEE EEN HNEEN
e | e [[e |
[IFEN MR
Boolhud_CloseDevice (hDevice) Boaol:oom_CloseDevice (hDevice)
o BB o u BB u
W Fo o
Boolhud_RetDigitalBarte (hDevice duwPort, bwPortS tate) Boolhud_RetDigitalBarte (hDevice,duwPort, buPortS tate)
- n B o
B EE [Jua
0z | o9 | [EFN MIEEN
[KFEH MEEE [KFFH MEH
-l T B | UB
Boolhud_iFetDigital Bte (hDevice,dwFort,IpbyPorts tate) Bool:com_GetDigitalBwte (hDevice,d wPort,IpbyPortS tate)
u B u n BB o
[_Jor] [_Jum Lol
Tz | ot | (IR HIEE
[KFFH HEEH [KFFH HEE
ug | ue B | UB
Debug Deplowment [:

G| [~ Fa)

Directly use the Decision USB Device component in LabVIEW

To connect Decision USB Device with LabView, you can use “Call Library Function

Node” to call subroutines in DLL to fit your own project or simply use a SubVI

“Decision_USBDevice.vi” we provided, which has already been packed as an universal object

for Decision USB Device.

£3
Decizion TSB Device Ll
[Decision TSBDevice vi]
COM MNam
D
T_TSEI.-'CTéTh: prew Handle
OUT Portl j E:Ei LIN PortD
OUT Port 1 IN Portl
OUT_Port 2 IN_Port2
OoUT Port 2 — —— I _Port3
Jpen Mezsage
i SIS
Decision TSE Device)
GRS :
Inputs
Name Type Description
Open Boolean Trigger True to Open Device
Close Boolean Trigger True to Close Device
USB/COM Boolean Device Connect by USB or COM, true for USB / false for COM
Type Unsigned Int32 | Select Device Type (More detail in “USBDII_Manual.pdf”’)
ID Unsigned Int32 | Select Device ID when multi-device connecting
COM Num Unsigned Int32 | Select COM Port Number when Device Connect by COM
OUT_Port0 Unsigned Int8 Set Write Value to PortO (only works on devices Port0 as output)
OUT_Portl Unsigned Int8 Set Write Value to Port1 (only works on devices PortO as output)
OUT_Port2 Unsigned Int8 Set Write Value to Port2 (only works on devices PortO as output)
OUT_Port3 Unsigned Int8 Set Write Value to Port3 (only works on devices Port0 as output)
Outputs
Name Type Description
Handle Unsigned Int32 | Return handle for the device (4294967295 means open error)
Message String Return some info for the device
IN_Port0 | Unsigned Int8 Return Read Value from Port0O (only works on devices Port0O as input)
IN_Portl | Unsigned Int8 Return Read Value from Portl (only works on devices Portl as input)
IN_Port2 | Unsigned Int8 Return Read Value from Port2 (only works on devices Port2 as input)
IN_Port3 | Unsigned Int8 Return Read Value from Port3 (only works on devices Port3 as input)

We use USB16PR as example to build a VI in LabVIEW by Subvi “Decision_USBDevice.vi”
Step 1: Execute LabVIEW and press “New VI”.

Step 2:

In Block Diagram, select “Select a VI”” and direct the path to “Decision_USBDevice.vi”

&

File Edit ¥iew FProject Operate Took Window Help

B12] © (1]]] ol ot [T tppiionron | Ferlam] (-1 [2]1

Debug Deployment 2]

Step3:

Connect USB16PR by USB and ID on the board is default O.
In this device, Port0O and Portl are Input and Port2 and Port3 are Output.
So connect the control and indicator as following below.

You can find the example in “ex_1Device.vi”.

Notice:

1. You can only connect pins the device needs and ignore others.

2. You need a while loop to continue running and get result.

3. Control for Open only needs one time and if Open pins set always true in loop, the
function hid_OpenDevice() will always be called and returns different handle value. It
will affect the system efficiency and the result. The better way is change the open control

“button behavior” as “Switch until released” ,and Control for Close as well.

E File Eu:iit View Project Operate Tools Window Help &
(2]@] @[] [@] (23] wal@]or [120t dpptisstion Fomt |~ [2~ |[s5a~] [£5-][2al] 3
[#]
[Extanple for TSE16PR]
Indicator
[Return Read Value for Portl]
IN_Port (]
[1]:]
[Retorn Bead Value for Portl |
IN_Port 1
123
[Bet Write Value for Port3] =
OUT Part 3
iz Message
|Eluth:|n for Open Device |
Open
Debug Deployment (1] B .:
b)
| Ele Edit Yiew Project Operate Took Window Help &
| |2 || @[M) | 12ptdppliation Font |~ || B || i~ || 8- | €5 |

You even can combine input and output as “cluster” to simplify the diagram.

In “ex_2Device.vi”, it demonstrates two devices in the same project and use clusters to simplify.

E File Edit View Project Operate Toolz Window Help @
W @ “I@hﬂi'ﬁ"u’” 12pt Application Font |v1|;mv' TD:v‘ |C§3vl|§
[~
ion_TTEEDewvice vi {"Z_I;_;:“"""'

I

1]
Debug Deployment 7] "
338

E Project Operate Tools Window Help
12pt Application Font |Yl|!;|_vil‘:ﬁ:_'|&i

